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Gangliosides are important biological molecules, performing functions as key regulators of many 
physiological processes on cellular, tissue, organ and organism level. These substances have shown 
a large structural heterogeneity, mainly in result from differences in number, identity, linkage and 
anomeric configuration of the carbohydrate residues, as well as from some structural differences. 
Relationship between the values of different gangliosides, the titers of specific auto-antibodies to each 
one ganglioside and the pathology of multi-factor socially important diseases and disorders has been 
underlined. These bio-molecules, as well as the interactions with their participation, or even lack of 
gangliosides in separate cases, are underlining the final clinical picture. Based on the deviation levels of 
ganglioside GM3 in some abnormalities of the glucose and lipid metabolism, the serum levels of GM3 
are characterized as a marker for the severity of metabolic syndrome. 
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Introduction

Gangliosides are complex acidic glycosphingolipids, containing one or more sugar 
residues, attached to a sphingolipid moiety, usually to a ceramide, but in rare cases also 
to a sphingoid base [13]. A large structural heterogeneity has been found to result from 
differences in number, identity, linkage and anomeric configuration of the carbohydrate 
residues, as well as from some structural differences, particularly within the hydrophobic 
part. These molecules have been characterized as key regulators of many physiological 
processes on cellular, tissue, organ and organism level.  Although the structures of 
gangliosides have been assigned to only a few series with a common carbohydrate core, 
their structural variety and the complex pattern are challenges for their elucidation and 
quantification by mass spectrometric techniques [8]. The alterations in the metabolism 
of gangliosides have been determined as one of the earliest changes, associated with 
the diabetic pathology [9, 13, 43]. Besides in free form, each ganglioside has been 
found to exist in various bounded forms with different bio-molecules, depending of the 
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respective functions, in which it participates [4, 7, 25-27, 52, 59]. In addition, cross-
reactions of specific antibodies to each ganglioside with other biological molecules 
have also been suggested. Furthermore, these studies show a possibility for production 
of immunoglobulins/antibodies by non-lymphoid types of cells, tissues and organs [18, 
37]. The control of the activity of the so produced antibodies is very important. Namely 
gangliosides have been proved also as small molecules, which provide such control.

Gangliosides, Obesity and Metabolic Syndrome. Ganglioside GM3 has been 
found to function as a physiological regulatory factor of the balance between homeostatic 
and pathological states in adipocytes by modulating insulin signaling in lipid rafts [35]. 
In order to counteract obesity-related metabolic disorders, the importance of therapies 
targeting GM3 biosynthesis has been highlighted [26]. The role of this ganglioside in 
mediation of obesity-induced perturbations in metabolic function, including impaired 
insulin action, has been particularly underlined. A probability of development of insulin 
resistance in increased levels of GM3 in the visceral adipose tissue of obese humans 
has been proposed [58]. In this connection, therapeutic strategies, aimed at targeting 
biosynthesis of this ganglioside for counteraction to obesity-induced metabolic 
perturbations, as well as of other manifestations of the metabolic syndrome, have been 
suggested. Several candidate-proteins, which may be involved in the generation of 
NeuGc (N-glycolyl) GM3 have been revealed, particularly GM3 synthase and subunit 
B of respiratory complex II (SDHB) [5]. Significant changes in quantity and quality 
of gangliosides (particularly GM3) in each stage of differentiation of mouse C2C12 
myoblasts have been found [15]. According to other studies, induced down-regulation 
of enzyme NEU3 sialidase in the same mouse cells has totally inhibited the capability of 
these cells to differentiate by increasing the GM3 level above a critical point [2, 19]. The 
authors have also proposed that influence on the functions of epidermal growth factor 
receptor (EGFR) could probably lead to activated responsiveness of the myoblasts to 
apoptotic stimuli. GM3, as well as the enzymes, involved in its metabolism, have been 
characterized as the best “candidates”, correlating with a number of metabolic disease 
risk factors as autotaxin, LDL-c and homeostatic model assessment insulin resistance 
[6, 55]. These data have been supported by the established metabolic abnormalities 
in Rhesus macaques, subjected to high-fat and high-fructose Western-style diet [6]. 
Based on the deviation levels of GM3 in some abnormalities of the glucose and lipid 
metabolism, the serum levels of GM3 are characterized as a marker for the severity 
of metabolic syndrome [44]. In this aspect, the role of GM3 as a negative regulator of 
insulin signaling has confirmed it as a potential therapeutic target in type II Diabetes 
mellitus [60]. The role of GM3 in mediating obesity-induced perturbations in metabolic 
function, including impaired insulin action has been proved [26]. 

Gangliosides and Diabetes. The synthesis of gangliosides has been suggested as an 
important pathway for glucose utilization in early stages of some diabetic complications 
as diabetic nephropathy [38]. These molecules have also been proved as mediators of 
the insulin resistance. Reports about correlation of alterations in their levels, types, 
distribution and metabolism with diabetes, including its autoimmune form, have 
also been obtained [28, 31, 32, 54]. In this way, gangliosides have been suggested as 
antigens, playing a role of targets for specific auto-antibodies in diabetic patients [14]. 
a-Series gangliosides are mediators of the effects of advanced glycation end products 
(AGEs). Their participation in some pathological and degenerative consequences of 
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diabetes, as diabetic retinopathy and diabetic nephropathy, has been suggested [28]. 
AGEs have also been proposed to be involved in the micro-vascular alterations in 
some diabetic complications as diabetic retinopathy [36]. In non-obese diabetic (NOD) 
mice increased titers of the islet cell antibodies (ICA) have been observed, and the 
distribution of beta-cells has been found as associated with a significant decrease in 
the amounts of gangliosides GM1 and GM2 in their pancreas, unlike of C57BL/10 
mice [11]. Significant correlation of the increased production of plasma ceramides with 
the decline in insulin sensitivity has been established [6]. In this aspect, particularly 
the increased values of ganglioside GM3 have been supposed to participate in the 
development of the insulin resistance and in this way – in the pathogenesis of diabetes 
[20, 23, 26, 51]. Affected serum GM3 levels have been established in abnormalities 
in the glucose and lipid metabolism [45]. Additionally, the depletion of the same 
ganglioside, as well as of enzymes, responsible for its synthesis, has been found to 
protect against different pathological and degenerative consequences of diabetes [30, 41, 
57]. In this relation, GM3 has been determined as a pathophysiological mediator in the 
development of diabetic nephropathy [38, 56]. On the other hand, ganglioside GM1 has 
been determined as an attractive target for detection, prevention and treatment of insulin 
resistance, of subsequent diabetes development, as well as of related complications, 
probably by abundant activity of this ganglioside on the surface of endothelial cells [44, 
66]. In this regard, a possibility for improvement of both insulin sensitivity and glucose 
homeostasis by glycosphingolipid synthesis inhibition has been suggested as a novel 
therapeutic approach for the treatment of type 2 diabetes [67]. Based on the deviation 
levels of GM3 in some abnormalities of the glucose and lipid metabolism, the serum 
levels of GM3 are characterized as a marker for the severity of metabolic syndrome 
[45]. Additionally, the role of GM1 in the activation of mediated by NO vasodilatation 
has been proved [13]. Taking in consideration the established nature of tyrosine kinase 
substrate p58/p53 and the insulin receptor as components of central nervous system 
(CNS) synapses, a role of the insulin signaling at these synapses has been proved [1]. 
Increased risk for development of type 2 diabetes in patients with Alzheimer’s disease 
has also been assessed, caused by general mechanism, underlining loss of β-cells and 
brain cells, respectively [21].

Gangliosides and Neurodegenerative Complications. The influence of gangliosides, 
but also the correlation of their levels, distribution and metabolism, on the development, 
structure and functions of the neural system and brain, have been proved [10, 61]. Due 
to their amphiphilic nature, gangliosides have been found localized to the cellular 
membranes, and many of their functions in health and disease have been established 
to result from both membrane reorganization and lipid interaction with proteins within 
the membrane structures [10]. The injuries in the levels, synthesis, degradation and 
metabolism of gangliosides have been proved as main signs of the early development 
of the neuro-degenerative diseases and disorders, as well as for understanding of the 
pathological mechanisms, underlining these processes [3, 17, 59]. Brain ganglioside 
content and composition, but also the metabolism of these bio-molecules, have been 
found to be altered in Alzheimer’s disease. Changes in the neuron membrane physico-
chemical properties have been proposed as a consequence of primary pathology, which 
might also be involved in the early pathogenesis of this neuro-degenerative disorder 
through documented effects on proteolytic processing and amyloid aggregation of 
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amyloid-precursor protein (APP). In Parkinson’s and Huntington’s diseases, significant 
alterations in the levels, distribution and metabolic pathways of gangliosides have also 
been established [10]. These results could be confirmed by data for the proved role of 
ganglioside GM1 in the promotion of neurite outgrowth signal [19, 59, 64]. Binding of 
GM1 to laminin-1 leads to activation of NGF-TrkA signaling pathway. This mechanism 
has been supposed as underlining the processes, described above. The role of auto-
antibodies to gangliosides in the development of many neuropathies has also been 
proved [27, 54]. Furthermore, most of the anti-ganglioside antibodies have shown anti-
sulfatide reactivity distinct from the other known antibodies, which has been proposed 
as one of the factors in demyelinating neuropathies development [29]. The appearance 
of anti-sulfatide, but also of anti-GM1 and anti-GM2 IgM auto-antibodies have been 
associated with immune-mediated neuropathies in younger age [24]. In many cases, 
the role of GM1 in modulation of Trk and Erk kinases phosphorylation and activity in 
the brain has been established [12, 33]. Namely the proved tight association of GM1 
with Trk has determined this ganglioside as a specific endogenous activator of the 
neuronal growth factor (NGF) receptor function [34]. A novel mechanism of neuronal 
apoptosis, mediated by GM1 accumulation has also been proposed [53]. Participation 
of ganglioside GM3 as a mediator in the neuronal cell death has also been proved [50].

Gangliosides and Vascular Complications. Gangliosides have been established to 
be primarily but not exclusively, localized in the outer leaflets of plasma membranes 
of the cells, and they have been characterized as integral components of cell surface 
microdomains with sphingomyelin and cholesterol, from which they participate in cell-
to-cell recognition, adhesion and signal transduction [62]. In many cases, alterations in 
the levels of this ganglioside GM3, as well as in its metabolism, have been associated 
with obesity, type 2 diabetes, metabolic syndrome, atherosclerosis and hypertension 
[54]. A correlation of the increased cellular levels of GM3 in monocytes and lymphocytes 
in atherosclerosis with cell activation, facilitating their adhesion to endothelial cells and 
penetration into the tunica intima, has been suggested [16]. In this connection, GM3 
has been suggested to be significantly correlated with the thickness of tunica intima and 
tunica media, which is often used for detection of atherosclerotic disease, as well as 
with many connected with the same disorder risk factors as LDL and insulin resistance 
[55]. Biologically-relevant GM1 concentrations have been found to lead to submicron-
sized domains in a cholesterol-rich liquid-ordered phase [65]. Eventual existence of 
small ganglioside-rich microdomain within a larger ordered domain in both natural and 
model membranes has been proposed [62, 63].

Gangliosides and Cholestatic Complications. Most of the normal serum 
gangliosides have been found to be synthesized in the liver [46, 48]. However, this 
anatomic organ has also been characterized as the main source of elevated levels 
of serum gangliosides in many liver diseases and disorders [46, 47]. Changes in 
the synthesis and/or distribution of gangliosides within the hepatocytes have been 
established due to estrogen-induced cholestasis, probably as a consequence of oxidative 
stress, but also the detergent properties of highly-concentrated bile acids [40, 49]. In 
this way, the authors have proposed a general mechanism of hepatoprotection by the 
gangliosides. These data have been confirmed by the observed significant changes 
in the distribution and synthesis of liver gangliosides, accompanying the cholestasis, 
in particular its obstructive form. Similar effects have been observed in the livers 
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of rats with experimentally-induced diabetes by treatment with Streptozotocin [43]. 
Also, changes in the molecular sub-species of ganglioside GM3 in human liver during 
the aging have been noted [39, 42]. Enhanced production of ganglioside GM1 at the 
sinusoidal membrane has been proposed to be due to re-distribution of cellular GM1 at 
limited biosynthesis and thus, could be responsible for protection of hepatocytes against 
harmful effects of bile acids, accumulated during the process of cholestasis [22]. In 
liver diseases deviations in the total concentration, pattern and distribution of serum 
gangliosides to different lipoprotein classes have been supposed [46]. These changes are 
probably due to qualitative and quantitative alterations in biosynthesis of gangliosides 
and secretion into the circulation (in cirrhosis), and lipoprotein metabolism alterations 
following cholestasis.

Conclusion

Gangliosides perform important role as key regulators in many physiological processes 
on cellular, tissue, organ and organism level. Disbalance in their values, as well as of 
different molecules, participating in their metabolism by cascade regulatory pathways, 
has been implicated in the pathology of multi-factor socially important diseases and 
disorders. On the other hand, the deviations, connected with the type, values and 
distribution of respective ganglioside and/or of various molecules, participating in 
its metabolism, could lead to development of various diseases and disorders. These 
molecules and the interactions between them or even lack of gangliosides in separate 
cases could lead to the final clinical picture. In this way, monitoring of the quantity and 
quality changes of gangliosides could be usable for determination the eventual risk for 
the metabolic syndrome development and expression.
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